Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Microorganisms ; 11(4)2023 Apr 02.
Article in English | MEDLINE | ID: covidwho-2301679

ABSTRACT

BACKGROUND: Since its outbreak, Coronavirus disease 2019 (COVID-19), a life-threatening respiratory illness, has rapidly become a public health emergency with a devastating social impact. Lately, the Omicron strain is considered the main variant of concern. Routine blood biomarkers are, indeed, essential for stratifying patients at risk of severe outcomes, and a huge amount of data is available in the literature, mainly for the previous variants. However, only a few studies are available on early routine biochemical blood biomarkers for Omicron-afflicted patients. Thus, the aim and novelty of this study were to identify routine blood biomarkers detected at the emergency room for the early prediction of severe morbidity and/or mortality. METHODS: 449 COVID-19 patients from Sapienza University Hospital of Rome were divided into four groups: (1) the emergency group (patients with mild forms who were quickly discharged); (2) the hospital ward group (patients that after the admission in the emergency department were hospitalized in a COVID-19 ward); (3) the intensive care unit (ICU) group (patients that after the admission in the emergency department required intensive assistance); (4) the deceased group (patients that after the admission in the emergency department had a fatal outcome). RESULTS: ANOVA and ROC data showed that high-sensitivity troponin-T (TnT), fibrinogen, glycemia, C-reactive protein, lactate dehydrogenase, albumin, D-dimer myoglobin, and ferritin for both men and women may predict lethal outcomes already at the level of the emergency department. CONCLUSIONS: Compared to previous Delta COVID-19 parallel emergency patterns of prediction, Omicron-induced changes in TnT may be considered other early predictors of severe outcomes.

2.
Curr Top Med Chem ; 2023 Feb 22.
Article in English | MEDLINE | ID: covidwho-2254067

ABSTRACT

BACKGROUND AND OBJECTIVE: This retrospective study aims to disclose further early parameters of COVID-19 morbidity and mortality. METHODS: Three hundred and eighty-two COVID-19 patients, recruited between March and April 2020, were divided into three groups according to their outcome: (1) hospital ward group (patients who entered the hospital wards and survived); (2) intensive care unit (ICU) group (patients who attended the ICU and survived); (3) the deceased group (patients admitted to ICU with a fatal outcome). We investigated routine laboratory parameters such as albumin, glycemia, hemoglobin amylase, lipase, AST, ALT, GGT, LDH, CK, MGB, TnT-hs, IL-6, ferritin, CRP, PCT, WBC, RBC, PLT, PT, INR, APTT, FBG, and D-dimer. Blood withdrawal was carried out at the beginning of the hospitalization period. RESULTS: ANOVA and ROC data evidenced that the concomitant presence of alterations in albumin, lipase, AST, ALT, LDH, MGB, CK, IL-6, ferritin in women, CRP and D-dimer is an early sign of fatal outcomes. CONCLUSION: The present study confirms and extends the validity of routine laboratory biomarkers (i.e., lipase, AST, ALT, LDH, CK, IL-6, ferritin in women, CRP and D-dimer) as indicators of COVID-19 morbidity and mortality. Furthermore, the investigation suggests that both gross changes in albumin and MGB, markers of liver and heart damage, may early disclose COVID-19 fatal outcomes.

3.
Cells ; 12(4)2023 02 17.
Article in English | MEDLINE | ID: covidwho-2244192

ABSTRACT

BACKGROUND AND METHODS: Severe COVID-19 is known to induce neurological damage (NeuroCOVID), mostly in aged individuals, by affecting brain-derived neurotrophic factor (BDNF), matrix metalloproteinases (MMP) 2 and 9 and the neurofilament light chain (NFL) pathways. Thus, the aim of this pilot study was to investigate BDNF, MMP-2, MMP-9, and NFL in the serum of aged men affected by COVID-19 at the beginning of the hospitalization period and characterized by different outcomes, i.e., attending a hospital ward or an intensive care unit (ICU) or with a fatal outcome. As a control group, we used a novelty of the study, unexposed age-matched men. We also correlated these findings with the routine blood parameters of the recruited individuals. RESULTS: We found in COVID-19 individuals with severe or lethal outcomes disrupted serum BDNF, NFL, and MMP-2 presence and gross changes in ALT, GGT, LDH, IL-6, ferritin, and CRP. We also confirmed and extended previous data, using ROC analyses, showing that the ratio MMPs (2 and 9) versus BDNF and NFL might be a useful tool to predict a fatal COVID-19 outcome. CONCLUSIONS: Serum BDNF and NFL and/or their ratios with MMP-2 and MMP-9 could represent early predictors of NeuroCOVID in aged men.


Subject(s)
Brain-Derived Neurotrophic Factor , COVID-19 , Male , Humans , Aged , Matrix Metalloproteinase 9 , Matrix Metalloproteinase 2 , Intermediate Filaments , Pilot Projects , Morbidity
4.
Cells ; 11(16)2022 08 10.
Article in English | MEDLINE | ID: covidwho-2032864

ABSTRACT

Neurofilament light chain (NfL) is a specific biomarker of neuro-axonal damage. Matrix metalloproteinases (MMPs) are zinc-dependent enzymes involved in blood-brain barrier (BBB) integrity. We explored neuro-axonal damage, alteration of BBB integrity and SARS-CoV-2 RNA presence in COVID-19 patients with severe neurological symptoms (neuro-COVID) as well as neuro-axonal damage in COVID-19 patients without severe neurological symptoms according to disease severity and after recovery, comparing the obtained findings with healthy donors (HD). Overall, COVID-19 patients (n = 55) showed higher plasma NfL levels compared to HD (n = 31) (p < 0.0001), especially those who developed ARDS (n = 28) (p = 0.0005). After recovery, plasma NfL levels were still higher in ARDS patients compared to HD (p = 0.0037). In neuro-COVID patients (n = 12), higher CSF and plasma NfL, and CSF MMP-2 levels in ARDS than non-ARDS group were observed (p = 0.0357, p = 0.0346 and p = 0.0303, respectively). SARS-CoV-2 RNA was detected in four CSF and two plasma samples. SARS-CoV-2 RNA detection was not associated to increased CSF NfL and MMP levels. During COVID-19, ARDS could be associated to CNS damage and alteration of BBB integrity in the absence of SARS-CoV-2 RNA detection in CSF or blood. CNS damage was still detectable after discharge in blood of COVID-19 patients who developed ARDS during hospitalization.


Subject(s)
Blood-Brain Barrier , COVID-19 , Axons , Humans , RNA, Viral , SARS-CoV-2
5.
Diagnostics (Basel) ; 12(5)2022 May 07.
Article in English | MEDLINE | ID: covidwho-1862746

ABSTRACT

COVID-19 (COronaVIrus Disease 19) is an infectious disease also known as an acute respiratory syndrome caused by the SARS-CoV-2. Although in children and adolescents SARS-CoV-2 infection produces mostly mild or moderate symptoms, in a certain percentage of recovered young people a condition of malaise, defined as long-COVID-19, remains. To date, the risk factors for the development of long-COVID-19 are not completely elucidated. Neurotrophins such as NGF (Nerve Growth Factor) and BDNF (Brain-Derived Neurotrophic Factor) are known to regulate not only neuronal growth, survival and plasticity, but also to influence cardiovascular, immune, and endocrine systems in physiological and/or pathological conditions; to date only a few papers have discussed their potential role in COVID-19. In the present pilot study, we aimed to identify NGF and BDNF changes in the serum of a small cohort of male and female adolescents that contracted the infection during the second wave of the pandemic (between September and October 2020), notably in the absence of available vaccines. Blood withdrawal was carried out when the recruited adolescents tested negative for the SARS-CoV-2 ("post-infected COVID-19"), 30 to 35 days after the last molecular test. According to their COVID-19 related outcomes, the recruited individuals were divided into three groups: asymptomatics, acute symptomatics and symptomatics that over time developed long-COVID-19 symptoms ("future long-COVID-19"). As a control group, we analyzed the serum of age-matched healthy controls that did not contract the infection. Inflammatory biomarkers (TNF-α, TGF-ß), MCP-1, IL-1α, IL-2, IL-6, IL-10, IL-12) were also analyzed with the free oxygen radicals' presence as an oxidative stress index. We showed that NGF serum content was lower in post-infected-COVID-19 individuals when compared to healthy controls; BDNF levels were found to be higher compared to healthy individuals only in post-infected-COVID-19 symptomatic and future long-COVID-19 girls, leaving the BDNF levels unchanged in asymptomatic individuals if compared to controls. Oxidative stress and inflammatory biomarkers were unchanged in male and female adolescents, except for TGF-ß that, similarly to BDNF, was higher in post-infected-COVID-19 symptomatic and future long-COVID-19 girls. We predicted that NGF and/or BDNF could be used as early biomarkers of COVID-19 morbidity in adolescents.

6.
Int J Mol Sci ; 23(4)2022 Feb 14.
Article in English | MEDLINE | ID: covidwho-1686821

ABSTRACT

The ongoing COVID-19 pandemic dictated new priorities in biomedicine research. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, is a single-stranded positive-sense RNA virus. In this pilot study, we optimized our padlock assay to visualize genomic and subgenomic regions using formalin-fixed paraffin-embedded placental samples obtained from a confirmed case of COVID-19. SARS-CoV-2 RNA was localized in trophoblastic cells. We also checked the presence of the virion by immunolocalization of its glycoprotein spike. In addition, we imaged mitochondria of placental villi keeping in mind that the mitochondrion has been suggested as a potential residence of the SARS-CoV-2 genome. We observed a substantial overlapping of SARS-CoV-2 RNA and mitochondria in trophoblastic cells. This intriguing linkage correlated with an aberrant mitochondrial network. Overall, to the best of our knowledge, this is the first study that provides evidence of colocalization of the SARS-CoV-2 genome and mitochondria in SARS-CoV-2 infected tissue. These findings also support the notion that SARS-CoV-2 infection can reprogram mitochondrial activity in the highly specialized maternal-fetal interface.


Subject(s)
Mitochondria/virology , Nucleic Acid Amplification Techniques/methods , Placenta/virology , RNA, Viral/metabolism , SARS-CoV-2/genetics , Adult , COVID-19/pathology , COVID-19/virology , DNA Probes/metabolism , Female , Humans , Pilot Projects , Placenta/pathology , Pregnancy , SARS-CoV-2/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL